首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   9篇
  国内免费   11篇
测绘学   17篇
大气科学   98篇
地球物理   14篇
地质学   18篇
海洋学   13篇
天文学   14篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2017年   5篇
  2016年   6篇
  2015年   21篇
  2014年   30篇
  2013年   33篇
  2012年   8篇
  2011年   16篇
  2010年   8篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1983年   2篇
  1976年   2篇
排序方式: 共有183条查询结果,搜索用时 31 毫秒
101.
Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth’s radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds.  相似文献   
102.
103.
104.
Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results generated using the self-organizing map(SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions(SBIs) and elevated inversions(EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei(CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains(SGP) site during 2001–10. Large-scale synoptic patterns strongly influence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity,frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The vertical distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN concentrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.  相似文献   
105.
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.  相似文献   
106.
The four-dimensional variational(4D-Var) data assimilation systems used in most operational and research centers use initial condition increments as control variables and adjust initial increments to find optimal analysis solutions. This approach may sometimes create discontinuities in analysis fields and produce undesirable spin ups and spin downs. This study explores using incremental analysis updates(IAU) in 4D-Var to reduce the analysis discontinuities. IAU-based 4D-Var has almost the same mathematical formula as conventional 4D-Var if the initial condition increments are replaced with time-integrated increments as control variables.The IAU technique was implemented in the NASA/GSFC 4D-Var prototype and compared against a control run without IAU. The results showed that the initial precipitation spikes were removed and that other discontinuities were also reduced,especially for the analysis of surface temperature.  相似文献   
107.
108.
109.
In the context of a changing climate, there is an urgent need to better understand the impact that weather disturbances have on food affordability in the developing world. While the influence of international markets on local food markets has received considerable attention, in contrast, the potential influence of weather disturbances on local food markets has received much less attention. In fact, local weather disturbances may have an adverse impact on the poorest households in developing countries. Here we quantify the short-run impact of both weather disturbances as well as international price changes on monthly food prices across 554 local commodity markets in 51 countries during the period between 2008 and 2012. We find that almost 20% of local market prices were affected by domestic weather disturbances in the short run, 9% by international price changes and 4% by both domestic weather disturbances and international price changes during the period. An improved understanding of the magnitude and relative importance of weather disturbances and international price changes on rural economies will inform public policies that are designed to mitigate the impact of adverse weather disturbances.  相似文献   
110.
As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During El Niño, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of El Niño in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号